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The theory and practice of control over quantum mechanical phenomena is receiving in-
creasing attention, underscored by striking experimental successes. Nevertheless, many ques-
tions of fundamental and practical relevance to the field remain unresolved. With the aim
of stimulating further development, this paper formulates a number of theoretical questions,
divided into three categories. First, questions related to control law design are discussed,
with an emphasis on controllability and optimal control theory. This leads to the second cat-
egory of open problems relevant to closed loop laboratory implementation of quantum con-
trol, including learning and feedback methods. The sensitive dependence of control on basic
quantum mechanical interactions motivates the third section, which treats coherent dynamical
techniques for identifying the system Hamiltonian. An open issue overarching all of these
directions is the need to discover general rules for the control of quantum systems. Although
the list of issues raised in this paper is extensive, it should be viewed not as a complete menu
for exploration, but rather as a springboard to new challenges as the field evolves.
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1. Introduction

Quantum mechanical control of molecular and other materials is a modern expres-
sion of the long-standing goal of directing the behavior of events at the atomic scale.
What distinguishes quantum control from the traditional means of chemical manipula-
tion is the use of delicate quantum wave interferences to alter the outcome of molecular
scale dynamics phenomena. The products of this directed evolution are the prescribed
control objectives (e.g., selective dissociation of a polyatomic molecule, the tailored ma-
nipulation of electron wavepackets in semiconductors, etc.). Recent progress in quantum
control is highlighted by experimental successes in cleaving [1–3] and rearranging [3]
selected chemical bonds, the creation of special excitations [4], the control of fluores-
cence in polyatomic molecules [5,6], and enhancement of radiative emission in high
harmonic generation [7]. Control at the quantum level is the ultimate limit of materi-
als manipulation, and many of the fundamental issues and implications of operating in
this regime remain unresolved. This paper aims to stimulate development along these
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lines by posing some of the central questions that are evident from the present state of
the field. In this context, selected areas of quantum mechanical control theory will be
reviewed; however, this article is not intended to serve as a review of the field, for which
the reader is referred to other works (cf. [8–10]).

Quantum control is most often expressed in terms of coherent motion stimulated by
precisely tailored radiation interacting with an atomic or molecular system [11]. While
this type of influence became possible with the advent of the laser in the 1960s, early at-
tempts to achieve quantum control were met with some frustration [12–14]. Difficulties
with the original experiments were attributed to features inherent in the underlying mole-
cular dynamics, such as rapid intramolecular dissipation of energy. Although these are
substantial concerns, in the late 1980s it was apparent that the main difficulties did not
lie with the quantum systems themselves but rather with the design of the laser radiation:
at the time, the design process depended primarily on physical intuition based on spec-
tral information about the isolated molecules of the system. An important step was the
recognition of the central role that quantum interference plays in the control process [15].
It became increasingly evident that the complex interplay between the control fields and
the entities being controlled calls for the introduction of rigorous design tools. The re-
quired theoretical framework came with the realization that engineering control concepts
can be extended to the quantum regime [16,17]. Coincidentally, the capability became
available to shape laser pulses in accord with the demands of complex multi-frequency
quantum dynamics. These developments have led to the recent dramatic progress in the
experimental and theoretical investigation of quantum control, but many mathematical
and algorithmic questions remain open.

The first step toward stating these questions is the mathematical expression of the
quantum control problem. Most of this paper will work under the assumption that
the system to be controlled can be characterized by its state function ψ(t). This is a
proper representation for isolated systems starting in a pure state; the complementary
case arises, for example, in collisional or condensed regimes, when a density opera-
tor ρ(t) must be introduced to describe the statistical mixture of states making up the
system. The density operator formulation will be discussed where relevant in this paper.

Consider a quantum system that evolves from the initial state ψ(t = 0) ≡ ψ0. The
objective of quantum control can generally be expressed as the desire for the evolving
system to attain the set of expectation values

Õj (t) =
〈
ψ(t)

∣∣Oj ∣∣ψ(t)〉 (1)

for a specified collection of operators Oj, j = 1, . . . , NO . For each of these opera-
tors Oj , a set of times Tj = {τ lj ; l = 1, 2, . . . , Lj } is defined, corresponding to the Lj
instances or durations τ lj at which the expectation values of Oj are to attain (as best
as possible) the control objectives Õj (t). Depending on the physical objective, an ele-
ment τ lj ∈ Tj may correspond to a discrete “target” time, a finite interval, or an infinite
interval. Defining the set T = ⋃

j Tj , the interval of control interest [0, T ] may be
formalized as the smallest interval containing 0 and T ; below, we will assume that T is
finite.
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In the absence of any external control influence, evolution of the state function ψ(t)
under the Schrödinger equation is determined by the free Hamiltonian H0, which by as-
sumption does not yield dynamics producing the desired expectation values (1) in [0, T ].
Quantum control theory considers the addition of a laboratory accessible control law
term C(t) to the Hamiltonian in order to achieve these objectives:

H = H0 + C(t) (2)

so that

ih̄
∂ψ(t)

∂t
= [H0 + C(t)

]
ψ(t) (3)

is the equation of motion.
The control law must belong to the relevant input space:

Definition 1. The input space C of a quantum control problem is the set of admissible
maps C : [0, T ] → A(H), where A(H) is the space of admissible operators H → H.
Here, admissible implies satisfaction of regularity and other auxiliary conditions as well
as consistency with the underlying physical problem.

With some abuse of notation, C(t) will be written for the element C to empha-
size time-dependence. Typically, C is expressed as a space of products of integrable,
time-dependent, vector or scalar-valued functions with a fixed time-independent opera-
tor onH. For example, a common input space law for lasers has the form C = {−µ·ε(t):
εi(t) ∈ L2[0, T ], i = 1, 2, 3}, where µ is the electric dipole operator, ε(t) is the ap-
plied electric field, and the index i refers to spatial orientation. Additional admissibility
conditions may ensure that ε(t) obeys laboratory limitations on the range of achievable
laser frequencies, intensities, energy, or other criteria.

In some applications, additional possibilities for C(t) arise. These include (1) the
use of magnetic fields, in which case the control law becomes −µm ·B(t), where µm is
the magnetic dipole operator and B(t) is the magnetic field, and (2) the use of materials
whose design specifications themselves take the form of a control law, such as for quan-
tum electron transport in semiconductors with variable material composition considered
as the control. Here, however, we will confine the discussion to time-dependent controls
based on an external electric field ε(t) coupled to the system through a dipole µ.

In some cases, it may be possible to obtain an adequate control description by
replacing the Schrödinger equation (3) with a classical representation of the system dy-
namics. This is especially true for interatomic phenomena, because the de Broglie wave-
length associated with atoms is often short relative to interatomic length scales. While
the relationships between classical and quantum models of molecular evolution have
been extensively investigated (cf. [18–21]), the implications of these relationships for
control are not completely understood and will be addressed later in the context of the
quantum character of the control problem.

Assuming knowledge of H0 and a well-defined control law C(t), equation (3) or
its classical equivalent represents a complete model of the system of interest. If C(t)
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is given a priori, the solution of equation (3) is a standard numerical problem in time-
dependent quantum mechanics. However, the essence of the control problem is to find
C(t) such that the objectives in equation (1) are met, and since at least one of the
control objectives lies in the future for any t ∈ [0, T ), this task presents some ad-
ditional challenges. In particular, the Hamiltonian depends on the future state of the
system through the control objectives, as can be formally represented by the expression
C(t) = C(ψ(s): s ∈ [t, T ]). This non-causality introduces an entirely new set of math-
ematical issues which are not present in standard quantum or classical dynamics but are
inherent to the theory and practice of temporal control in engineering and mathematical
systems theory (see [22, and references therein] and [23–26]). Their implications for the
quantum regime are central to the questions in this paper.

The formulation above is summarized in the following definition:

Definition 2. The quantum control problem consists of determining a control law C(t)
that causes the system to optimally achieve the expectation values (1) while possibly
also satisfying auxiliary conditions. Quantum control theory encompasses methods of
determining these control laws, their general properties, and their relationship to the
underlying physical system and evolving quantum states.

The control of quantum phenomena involves a wide range of considerations and
applications, and accordingly the balance of the paper will proceed with the overall
structure shown in figure 1. Section 2 first addresses the fundamental question of the
existence (often under prescribed auxiliary conditions) of a control law that causes ex-
act satisfaction of the objectives (1). A general method for finding an optimal C(t) is
through minimization of a cost functional which penalizes deviations from the control
objectives and auxiliary conditions; questions related to this quantum optimal control de-
sign are also discussed in section 2. Section 3 on the laboratory achievement of control
addresses two limitations on the application of computational optimal control design to
physical systems: (i) uncertainties in representations of H0, C(t), and (ii) the often-
excessive computational demands of numerically solving the design equations. The
techniques discussed in this section avoid these problems because they are directly based
on the relationship between the actual observed physical system and the control law. In
this context quantum control design can be seen as exploring the dynamical outcomes
caused by C(t) and providing estimates for the control law that may be refined in closed
loop laboratory experiments. From another perspective, observations of these control
processes might be a rich source of tailored data for identifying the system Hamiltonian
and optical or other coupling terms. This is the subject of the section 4, which includes
the development of inverse algorithms and the important possibility of realizing a new
type of adaptive dynamical spectrometer. Section 5 covers the challenge of identifying
control pathways and relationships between control laws for families of systems and
objectives, including measures of similarity relevant to characterizing distinct quantum
control systems. Identification of such rules for controlling quantum systems would be
of central importance to the entire subject.
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Figure 1. The relationships of the major quantum control topics discussed in this paper. The output of these
efforts may be either alterations of an atomic or molecular system through its controlled manipulation,
or enhanced fundamental understanding including identification of the system Hamiltonian. An overarch-
ing issue in all of these activities is the determination of the systematic rules for coherently manipulating

quantum dynamics phenomena.

Statements of open problems are sequentially numbered throughout the paper, and
are expressed as questions. Some of these questions may best be approached through
extensions or applications of engineering control and mathematical systems theory to the
quantum domain, while others may require the introduction of new methods. Whatever
form the answers might take, we hope that the insight gained in considering these and
related questions will contribute to the further development of the field: to quote a similar
effort [27],

“It is therefore entirely acceptable to treat these open problems in the way problems in
this field have been treated in the past. After reformulation, simplification and mod-
ification, the open problem leads to a solution of a different problem that is perhaps
easier but that is perhaps also more important.”

We also emphasize that the collection of questions in this paper reflects the perspective of
the authors, and that the list, expanded by those working in the field, will surely continue
to evolve.

2. Design of control laws

The topics in this section concern the theory and practice of computationally de-
signing the control law C(t) in equation (3). Before we discuss the computations, it is
natural to ask if the problem is well-posed such that a control law exists which will cause
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the objectives and auxiliary conditions to be precisely satisfied (section 2.1). Even if the
answer to the latter question is negative, one may still be satisfied with achieving the
control objectives as best as possible through the optimization techniques of section 2.2.

2.1. Controllability of quantum mechanical systems

The fundamental importance of addressing controllability has long been recog-
nized in engineering control applications; the broad literature on the classical aspects of
the subject includes many comprehensive texts which cover linear [23,24] and nonlin-
ear [22,25,26] controllability. In addition, several works have considered various aspects
of quantum controllability, e.g., [8,28–35]; here, we will discuss some of the unresolved
issues.

Quantum controllability is generally expressed in terms of identifying the set of
final states that can be obtained from a given set of initial states. We first formalize some
key notions by considering the infinite-dimensional quantum system prescribed by γ
spatial variables in equation (3):

Definition 3. A state or wave function ψ is an element of the (complex) unit sphere S =
{ψ ∈ L2(Rγ ): ‖ψ‖L2(Rγ ) = 1}.

Solutions to Schrödinger’s equation (3) define a trajectory ψ(t : t ∈ [0, T ]) on
S from the initial state ψ(0); as such, ψ(t) should have spatial derivatives of up to
order 2 defined in (at least) the weak [36] sense. This motivates considering a subset
of S with this (or a stronger) regularity property. For example, we may restrict our
attention to ψ ∈ (S ∩H2(Rγ )), where

Definition 4. The Sobolev spaceH2(Rγ ) ⊂ L2(Rγ ) contains all ψ ⊂ L2(Rγ ) such that
ψ possesses weak (spatial) derivatives of up to order 2 belonging to L2(Rγ ).

We now introduce

Definition 5. The reachable set from ψ1 is the set of states �(ψ1) = {ψ2
∣∣∃C ∈ C

s.t. ψ(t = t ′) = ψ2}, where ψ(t) satisfies (3) with ψ(0) = ψ1 and t ′ is some finite time
depending on ψ1 and ψ2.

Definition 6. The system (3) is controllable if �(ψ1) = S ∀ψ1 ∈ S. In other words,
the system is controllable if for any two states ψ1 and ψ2 there exists a control law
C(t : t ∈ [0, t ′]) ∈ C such that ψ(t = t ′) = ψ2, where ψ(t) satisfies equation (3)
with ψ(0) = ψ1.

Truncating an infinite-dimensional quantum control problem with states inH to an
n-dimensional problem (with states in Hn) changes the nature of both the control and
Hamiltonian operators and the states available as candidate members of reachable sets.
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Figure 2. Pictorial representation of the controllability questions 1 (a) and 2 (b). In both cases, control-
lability is of interest within the shaded subspace as the dimension of the truncated space Hn increases to

infinity.

This truncation in turn affects the controllability criteria given in definition 6. The con-
cern is to characterize these effects by asking how a controllability result obtained in a
finite-dimensional space relates to the original infinite dimensional problem from which
it was derived; there are also inherently finite dimensional quantum systems (as with
spins) where the latter consideration does not arise. The starting point is the result [31]:

Theorem 1. Let S be as in definition 3. Under general conditions (including bounded-
ness of the control law), the set of unreachable states S\�(ψ1) from an arbitrary initial
condition ψ1 ∈ H2(Rγ ) ∩ S is dense in S. Furthermore, (H2(Rγ ) ∩ S)\�(ψ1) is dense
in H2(Rγ ) ∩ S.

The theorem implies that within any open set around a point ψ2 ∈ H2(Rγ ) ∩ S
there exists a state unreachable from any ψ1 ∈ H2(Rγ )∩ S, and in addition that this un-
reachable state can be chosen to have weak derivatives in L2(Rγ ). Possible extensions of
the theorem might show that, for example, (C2(Rγ ) ∩ S)\�(ψ1) is dense in C2(Rγ )∩S
(thereby proving the existence of twice-continuously differentiable unreachable states).

Consider a quantum system that is controllable when its (truncated) equations of
motion are expressed with respect to a particular n-dimensional basis which spans a finite
dimensional space Hn when n = n0. According to theorem 1, for every initial condition
there must emerge a dense set of unreachable states in the limit n tends to infinity (de-
picted in figure 2(a)), assuming that the limiting process is well defined. In other words,
once n → ∞ (starting from n = n0), the system must become uncontrollable in the
strict sense defined above. This limit suggests the question:

Question 1. How is the controllability of a sequence of finite but increasingly higher
dimensional quantum systems related to the controllability of the corresponding infinite-
dimensional quantum system in the limit n→∞ (if this limiting process exists)? How
are the sets of unreachable states that emerge in this limit characterized?
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The analysis implied in question 1 can be subtle, as evident from a simple illus-
tration involving the emergence or disappearance of unreachable states under finite in-
creases in the dimensionality of Hn. For example, in hydrogenic atoms the transitions
due to emission or absorption of photons must satisfy the selection rules �l = ±1 and
�m = ±1 or 0. If the step Hn → Hn+1 of the limiting process adds a basis function
to which there does not exist a sequence of allowed transitions from some function ψ1

in Hn, the additional dimension has caused a loss of system controllability. The con-
verse situation may also arise where the additional basis function provides a “missing
pathway” between states that were mutually unreachable in Hn: in this case, the step
Hn→ Hn+1 might cause an uncontrollable system to become controllable. It is an open
question in quantum controllability to understand how such stepwise processes may be
interpreted in the infinite limit, which must be taken with special care and in some cases
may not exist.

The concept of controllability under increases in state space dimensionality may
be related to general properties of function approximation. For example, consider the
approximation of an arbitrary element f of an (infinite-dimensional) function space F
by linear combinations {∑n

i=1 aifi} of an n-dimensional basis {fi: i = 1, . . . , n} ≡
Fn ⊂ F . The n-term approximation is accurate if the coefficients ai of the correspond-
ing n+-term expansions for f are negligible for i > n. The condition for extending
controllability from an n- to an n+-dimensional system can be viewed as the converse:
for ψ2 as in definition 6, each coefficient in the expansion ψ2 =∑n+

i=1 aiψi must be able
to take any complex value (under the constraint

∑n+
i=1 |ai |2 = 1).

Now consider the related issue of controllability within a “subspace of interest”
HI that is contained within Hn (i.e., as depicted in figure 2(b)). Let HI be spanned
by the first I elements of the set of basis functions {ψi: i = 1, . . . , n} spanning Hn.
Definition 6 may be modified to restrict analysis to the subspace of interest: controlla-
bility will be taken to mean that a system is controllable between any two states ψ1

I and
ψ2
I in S ∩ HI . Controllability may be described as stationary within HI if it remains

unchanged as individual dimensions are added in any order to Hn until (if it exists) the
limit limn→∞Hn = H, n � I , is obtained. This suggests the question:

Question 2. What characteristics of the Hamiltonian H0, the dipole or other coupling
coefficients, and the spaces HI ⊂ Hn ⊂ H are required for stationary controllability
within HI?

Questions 1 and 2 do not address the effects on the evolution of states within the
truncated space Hn arising from states that lie outside of Hn. This consideration also
has practical consequences. For example, suppose that controllability is satisfied within
Hn for question 1 or within HI for some Hn in question 2. A realizable laboratory
control might inadvertently also access states lying outside of Hn which might even
lift the controllability in the desired subspace. Techniques from optimal control theory
would be the desirable way to handle the discovery of practical fields best satisfying the
assumptions under an associated controllability analysis.
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Following upon the latter discussion, a new class of questions is introduced if a
term is added to the Schrödinger equation to represent the interaction of the remainder
states that are not explicitly modeled: elements of Hr ≡ H\Hn. One such term in-
troduced in [37], cf. also [22, and references therein] is an n-dimensional disturbance
vector w:

∂ψ

∂t
= [H0 + C(t)

]
ψ + w, (4)

where ψ ∈ Hn. The form and magnitude of the disturbance term w is problem-
dependent and assumed to be given a priori, and generally leads to a nonunitary evo-
lution for ψ(t). In min–max optimal control theory (cf. section 2.2), w is selected to
maximize the disruptive effect of the energy-bounded disturbance (e.g., fluctuations in
the laboratory environment and apparatus). In another general context, w could repre-
sent coupling to a bath external to the dynamics described by H0 + C(t). This type of
coupling is important for considerations of dynamical cooling [38–41] in the analogous
density matrix formulation.

Question 3. What general models of dynamics exterior to Hn ⊂ H can cause control-
lable systems to become uncontrollable and vice versa? Also, how does introducing a
disturbance affect answers to questions 1 and 2?

Lie group analysis [26] has been applied to determining quantum controllability,
and has resulted in the identification of a sufficient condition for controllability in n-
dimensional spaces Hn [30]. The analysis exploits the facts that states unit-normalized
in some Hn lie on the (2n − 1)-dimensional unit sphere, and that there exist n × n
unitary transformations U (elements of the Lie group U(n)) that map between any two
points on such a sphere. A Lie algebra of matrices is generated by the Lie brackets
associated with the evolution operator of the Schrödinger equation (3), and a sufficient
condition for controllability inHn is that this algebra have dimension n2− 1. While this
condition holds under the constraint that the control field amplitudes are bounded [30],
an open question suggested in this work is the extension of the result to stricter (and
more realistic) admissibility conditions:

Question 4. Can the Lie algebraic controllability conditions [30] be extended to treat
the case where both the amplitude and the frequency of the control field are bounded
from above and below?

This issue has practical significance as it prescribes real laboratory conditions.
The quantum control problem becomes more complex when the control law and

the free Hamiltonian cannot be treated independently. An important example of this
phenomenon is intense-field laser control of molecular motion, where the electric field
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can directly alter the dipole operator through its manipulation of the electronic degrees
of freedom:

C(t) = −µ(ε(t)) · ε(t). (5)

In simple cases, the relation in equation (5) may be expanded in terms of a low
order polynomial in ε(t) whose coefficients are the electric moments and polarizabilities
of the system. Of special interest are situations in which the nonlinear structure in (5)
may affect the controllability of the system (including the positive case in which this
interaction makes a previously inaccessible target reachable):

Question 5. Can the existing methodology for proving quantum controllability be
adapted, or a new methodology from mathematical systems theory be applied, to treat
the situation where the control law has a nonlinear dependence on the control field?

The circumstances motivating question 5 can also be viewed from the larger per-
spective of a controllability analysis simultaneously including electronic and nuclear
motion. In the latter circumstance the control field will enter the Hamiltonian linearly,
but at the expense of explicitly including the electronic degrees of freedom. When elec-
tronic excitation is under study and when the Born–Oppenheimer approximation is not
valid this full analysis will be required. The same comment also applies to the perfor-
mance of optimal control designs in the strong-field regime. The practical importance of
investigating the latter domain has recently been demonstrated experimentally [3].

A complementary situation occurs when the back action of the quantum medium
upon the propagating control field is significant (i.e., the medium is optically dense).
This scenario has been examined experimentally for a vapor of sodium [42], and the
topic is of practical importance because the controlled medium will be dense in any ap-
plication directed toward collecting large amounts of product. Optically dense media
can interact with the electric field to alter its phase and/or amplitude structure as it prop-
agates. In order to model this effect, the Schrödinger equation must be coupled with
Maxwell’s equations:

Question 6. In what cases can controllability be shown within the product state space
of the coupled Schrödinger–Maxwell equations for optically dense media?

In practical applications the medium will be at a finite temperature. Hence, to an-
swer question 6 (or any other question that concerns a statistical mixture of quantum
states) the density operator formulation is necessary. In this formulation, the time evo-
lution is given by the quantum Louiville equation

dρ(t)

dt
= 1

ih̄

[
H(t), ρ(t)

]
, (6)

and expectation values are calculated as〈
O(t)

〉 = Tr
(
ρ(t)O

)
. (7)
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The relevant definition of controllability becomes:

Definition 7. The system (6) describing the evolution of the density operator ρ(t) is
controllable if for any two density operators ρ1 and ρ2 there exists a control lawC(t) ∈ C
such that given the initial condition ρ(0) = ρ1, then ρ(t ′) = ρ2 for some finite time t ′.

While the Schrödinger–Maxwell system has a product state space representing both
ρ(t) and ε(t), expectation values (7) depend only on the density operator, which is the
usual focus of controllability studies. This inspires the question:

Question 7. In what, if any, cases is it possible for the Schrödinger–Maxwell system to
be controllable in the state space of the quantum state but not controllable in that of the
electric field, or vice versa?

The latter case of controlling the electric field is of importance in the allied subject of
optical field propagation, e.g., [43].

The next question seeks to address controllability from an analysis of the kinematic
structure of the Hamiltonian. When expressed with respect to a finite (orthonormal) basis
of eigenstates {ψi}, the Hamiltonian in equation (3) often takes the form:

H0 =



E1 . . . 0
E2

...
. . .

0 En


 , C(t) =




0 c12(t) . . . c1n(t)

c∗12(t) 0 cij (t)
...

... c∗ij (t)
. . .

c∗1n(t) . . . 0


 . (8)

In the case of optical excitation with an arbitrary electric field ε(t), the control law C(t)
matrix elements are cij (t) = −ε(t) · 〈ψi|µ|ψj 〉. In the present analysis, we assume that
the transition frequencies are incommensurate such that the control field can indepen-
dently address each transition. This condition is |Ei − Ej | �= |Ek −El | for all values of
the indices i, j, k, and l with the constraints i �= j and k �= l as well as at least one of
the indices being distinct between the pairs {i, j} and {k, l}. The connectivity amongst
the states {ψi} provided by the elements cij is central to issues of controllability. The
structure in C can be conveniently expressed graphically by employing the following
definitions:

Definition 8. Let every state be a node of a graph and let there be edges between every
pair of nodes i and j with cij being nonzero. Then two states are connected by a path of
length m if there exists a connected set of m edges between i and j .

Definition 9. The graph is connected if there exists a path of some length m between
every pair of vertices. A natural upper bound on m is n − 1 (the longest nonredundant
path).
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Definition 10. The n× n adjancy matrix A has elements aij = 1 if cij �= 0 and aij = 0
otherwise.

It follows from these definitions that (A2)ij = ∑
k aikakj is nonzero if and only

if aik and akj are both nonzero for at least one k, implying the existence of a path of
length 2 through k from i to j . This is easily generalized for paths of length m: (A)mij =∑
k(A)

m−1
ik (A)kj is nonzero if and only if there is at least one path of length m−1 from i

to some k, and a path of length 1 from this k to j . Observing that the elements of Am

are non-negative, it follows that a graph is connected if and only if
∑
m�(n−1) A

m has
no zero off-diagonal elements [43]; this implies the existence of a kinematical pathway
from any initial state to any final state ψ(t ′) =∑n

i=1 aiψi .
The conditions of connectivity and incommensurate transition frequencies involve

only the eigenvalues of H0 and powers of the adjacency matrix A (which depends only
upon which elements of C are nonzero, rather than their particular values) and are thus
fundamentally different from the Lie algebraic criteria for controllability found in [30].
An open question is whether these new conditions are sufficient for controllability:

Question 8. Does graph connectivity imply controllability of a finite-dimensional quan-
tum system with incommensurate transition frequencies?

Progress toward answering this question has recently been made in [32,33].
The analysis of controllability in terms of state functions ψ(t) reaches beyond

what is necessary physically, as realistic objectives are expectation values of observable
operators (cf. equation (1)). Since these quantities involve integrals of state functions,
their control should generally be less demanding than that of the state itself. However,
the quadratically nonlinear nature of the expectation values adds a level of additional
complexity to the problem of determining controllability. These observations raise the
question:

Question 9. Do there exist general conditions for the controllability of objective expec-
tation values that relax those for the controllability of quantum states themselves?

In [31], this question is answered for the special case of projection operators
Oi = |ψi〉〈ψi |. In this situation, the control objectives are populations of quantum
states (e.g., |〈ψ |ψi〉|2), and it is shown under general conditions that the controllability
of these objectives can be established. Kinematical constraints on the controllability of
systems in mixed states have been established [34,35], based on the eigenvalues of ρ(0)
and those of the objective operator.

The proof of controllability in [31] establishes an algorithm which constructively
generates control laws for objective operators of the form Oi = |ψi〉〈ψi | in terms of
sinusoidal electric fields of different fixed frequencies. This, along with other work on
special cases of constructive quantum control [45,46], invites the question:



E. Brown, H. Rabitz / Challenges in quantum control 29

Question 10. Can general constructive control solutions be developed for the quantum
controllability of a broad class of objective expectation values?

While the explicit construction of control solutions is generally an area of active research
in control theory [26,47], the case of quantum controllability of expectation values re-
duces this task to the specific structure of Schrödinger’s equation and may be amenable
to attack.

A serious practical issue in implementing the control design process (cf. sec-
tion 2.2) is the need for the accurate numerical solution of the Schrödinger equation (3),
which can be computationally very expensive. Since the Schrödinger equation must be
solved at least once (and generally many times) in most optimal control and Hamiltonian
identification methods, the numerical evolution of quantum systems with high degrees of
freedom must be approximated in some fashion before these techniques can be applied.
Along these lines, broad classes of quantum dynamics approximations have been devel-
oped, and in principle any of them could be applied to quantum control design. Before
actually attempting to attain designs, it is worth investigating the following question:

Question 11. What are the effects on controllability of replacing the Schrödinger equa-
tion with its various quantum dynamical approximations?

Significant influence of a dynamical approximation upon a system’s controllability could
have serious consequences for the reliability of any resultant control designs based on
the approximation.

2.2. Optimal control theory

2.2.1. Basic concepts
As section 2.1 suggests (cf. question 10), the establishment of controllability gen-

erally does not provide an actual control law required to achieve an objective of the
form (1); full controllability simply means that at least one such control law exists. Sev-
eral approaches for determining control laws will be discussed in the remainder of this
paper. The present section concerns the use of optimal control theory for this purpose.
An extensive literature on optimal control theory can be found in classical engineering
and mathematical systems theory (e.g., [22,48,49]) and increasingly in quantum me-
chanics (e.g., [8, chapter 6 and references therein] and [50,51]). Considering control
law design as an optimization problem is quite natural, as attaining the best possible
final level of control is always the goal; further, optimization is essential when there are
competing physical objectives that must simultaneously be met.

In addition to the general approach outlined below, special techniques for control
law design have been developed for cases in which a priori specification of control mech-
anisms is possible. These methods include time-resolved “pump-dump” or frequency-
resolved multiple-path and simulated Raman adiabatic passage (STIRAP) schemes. Un-
der particular quantum dynamics approximations and/or assumptions, these techniques
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allow for the derivation of closed form expressions for control laws that optimally or
exactly accomplish certain control objectives. The literature on related theoretical (see
[8, chapters 3–5 and references therein] and [52–62]) and experimental (see [8, chap-
ters 3–5 and references therein] and [59,60,63,64]) developments is extensive.

The first step in formulating the general quantum optimal control problem is to
define a “cost functional” whose minimization represents the balanced achievement of
control and possibly other objectives. This cost functional is given by

J
(
C(t), ψ(t); t ∈ [0, T ]) =∑

k

Jk
(
C
(
ψ(t); t ∈ [0, T ])), (9)

where each term is positive semi-definite and the goal is to minimize J with respect
toC(t). While the specific form of the cost functional is flexible and problem-dependent,
a term J1 that addresses the achievement of the optimal control objectives (1) is always
included, such as:

J1 =
NO∑
j=1

Lj∑
l=1

Wl
1,j



∫
τ lj

dt
∣∣〈Oj(t)〉− Õj (t)∣∣2 if τ lj is an interval,

∣∣〈Oj(τ lj)〉− Õj(τ lj )∣∣2 if τ lj is a discrete time.

(10)

Here, the Wl
1,j are positive design weights assigned to each of the objectives; for full

generality these weights could be time dependent and appear in the integrand in equa-
tion (10).

For physically realistic control laws, the energy of the laboratory/molecular inter-
action must be bounded. This criterion is often included by adding the term

J2 =
∫ T

0
W2(t)

∣∣ε(t)∣∣2 dt (11)

to the cost functional, which effectively limits the total electric field fluence. Here,
W2(t) � 0 determines the time-dependent relative importance of minimizing the fluence.
Note that the term J2 does not prevent ε(t) from being large in some small interval of
time, although a cost on the local magnitude at any time could be introduced for this
purpose.

Penalty terms may also be included, causing the minimization of the expectation
values of NO′ “undesirable” operators O ′j at the corresponding times τ ′lj :

J3 =
NO′∑
j=1

Lj ′∑
l=1

Wl
3,j



∫
τ ′lj

dt
∣∣〈O ′j (t)〉∣∣2 if τ ′lj is an interval,

∣∣〈O ′j (τ ′lj )〉∣∣2 if τ ′lj is a discrete time.

(12)

In addition to those explicitly given here, there are many other forms of Jk that could
be incorporated into the cost functional. These terms could represent, for example, re-
striction of the windowed Fourier transform of ε(t) to a particular frequency band, min-
imization of sensitivity to small perturbations in the control law (as will be discussed
below), or other characteristics of the desired optimal control solution.
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One property of control law solutions C(t) of practical import is simplicity. Sev-
eral measures of simplicity could be used, such as the ability to decompose the control
law into only a small number of spectral components with high accuracy [65]. However,
the notion of field simplicity is best associated with the ease of stable and reliable gener-
ation in the laboratory, rather than any preconceived sense of simplicity associated with
the presence of few field components. Design of simple control laws might be accom-
plished by introducing a term in the cost functional that favors solutions with suitable
characteristics, or in a very ad hoc fashion by starting an iterative optimization algo-
rithm with a simple control field and halting the process while some of this simplicity is
still preserved but likely before complete convergence to the control objectives has been
achieved. The latter suggestion follows from the observation that the final small fraction
of progress toward the control objectives is often responsible for most of the complexity
in the control field [66], (e.g., see [8, table 6.1]). None of the above approaches has
been subjected to a careful mathematical analysis, and further efforts to characterize the
effects of these modifications on the optimal control process may be useful.

Thus far the terms in the cost functional have all been introduced to seek a con-
trol field that biases the objective or other goals in some specified direction. Under
favorable circumstances one or more of these costs could be re-expressed as a hard de-
mand by introducing a Lagrange multiplier. An example would be a requirement that
the laser pulse energy be fixed at a specified laboratory accessible value; the reshaping
would redistribute that energy as best as possible over a band of frequency components
to meet the physical objective. Some absolute demands may lead to inconsistencies and
resultant numerical design difficulties if the demand cannot be satisfied for some (often
hidden) dynamical reason. Deducing when hard physical demands are attainable would
be valuable, leading to the question:

Question 12. What characteristics of the Hamiltonian and the dipole operator can be
used to identify attainable hard constraints when a system is put under control?

The question seems naturally suited for a controllability analysis.
Once the cost functional (9) has been defined, the optimal control law is deter-

mined by minimizing the cost functional over the function space of admissible con-
trols. Local or global optimization algorithms (e.g., respectively, gradient descent and
genetic algorithms) may be used to find the minimum of (9) subject to satisfaction of the
Schrödinger equation, possibly under suitable quantum dynamics approximations and
assumptions [67,68]. Alternatively, the Euler–Lagrange approach may be pursued, as
explained below.

At the relevant minima of the cost functional, the first order variation with respect
to the control law vanishes:

δJ

δC(t)
= 0. (13)

Equation (13) is subject to the dynamical constraint that ψ(t) satisfies the Schrödinger
equation; this may be assured through the introduction of a Lagrange multiplier func-
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tion λ(t) [22]. The resultant variational problem produces Euler–Lagrange equations
whose solutions define the controls C(t) operative at each local extrema of J .

To demonstrate some of the characteristics of these equations, consider as an exam-
ple a quantum optimal control problem in which there is only one objective operator O
whose expectation value is to be optimized at the single target time T . The cost func-
tional J = J1 + J2 consists of the terms given in equations (10) and (11), both weights
are set to unity, and C(t) = −µ · ε(t). The Euler–Lagrange equations then become:

ih̄
∂ψ(t)

∂t
= [H0 − µ · ε(t)

]
ψ(t), ψ(0) = ψ0, (14)

ih̄
∂λ(t)

∂t
= [H0 − µ · ε(t)

]
λ(t), λ(T ) = 2

(〈
ψ(T )

∣∣O∣∣ψ(T )〉− Õ)Oψ(T ), (15)

εi(t)=−1

h̄
Im
{〈
λ(t)

∣∣µi∣∣ψ(t)〉}. (16)

Here, the subscript i refers to spatial orientation. If the field in equation (16) is sub-
stituted into equations (14) and (15), the system becomes a pair of coupled nonlinear
evolution equations. The initial and final conditions for equations (14) and (15) are ψ(0)
and λ(T ), and they generally require an iterative solution to the equations. Henceforth,
equations of the form (14)–(16) will be referred to as the quantum optimal control equa-
tions.

Numerical experiments [69, figures 15 and 16] have shown that |λ(x, t)|2 may
be quite similar in form to |ψ(x, t)|2. This suggests asking whether suitable physical
interpretations of the Lagrange multiplier function may aid in attaining desirable control
behavior:

Question 13. Considering that the quantum optimal control problem is generally un-
derposed, to what degree may the Lagrange multiplier function be exploited to obtain a
control solution with desired physical characteristics in the evolution toward the control
objectives? Can the similarity of |λ(x, t)|2 and |ψ(x, t)|2 be utilized to produce viable
approximate solutions to the optimal control equations?

Systems of the form (14)–(16), as two-point boundary value problems in time,
may have any number of solutions. Under a mild set of assumptions the general quantum
optimal control problem has been shown to possess a countable infinity of solutions [70].
This result has been shown for cost functionals of the form J = J1+J2+J3 having one
objective operator O at a final time T and a single penalty operator O ′ evaluated over
the entire control interval (i.e., T ′ = {[0, T ]}). In this work [70] additional assumptions
are that: (i) O and O ′ are bounded operators, (ii) O is either positive- or negative-
definite, and (iii) µ · ε(t : t ∈ [0, T ]) is bounded (although the proof can be extended
for unbounded control terms). However, it is known that at least some quantum optimal
control problems have a unique solution, as was demonstrated in [17] for the problem of
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a harmonic oscillator system with a particular quadratic cost functional. These overall
observations lead to the question:

Question 14. What special criteria existing in the Hamiltonian structure or imposed on
a quantum optimal control problem will permit the existence of a unique solution?

As analytical solutions to the quantum optimal control equations cannot gener-
ally be found, iterative numerical algorithms must be employed. The time-dependent
Schrödinger equation in multiple spatial variables is computationally very expensive to
solve, raising the question:

Question 15. Can quantum dynamics approximations can be found that are tailored to
efficiently solving the quantum optimal control equations?

There appear to be many opportunities to develop special control design approxima-
tions, and while some work has already been done [8], there is room for much develop-
ment.

An algorithm was developed in [71,72] that converges to a local solution of the
quantum optimal control equations monotonically and at a quadratic rate. This method
has been extended for use in the density matrix framework [73], and is applicable to
cost functions depending on a single-time cost of the form J {ψ(T ), {Oa}}, where J has
a positive-semidefinite Hessian δ2J/(δψ(t)δψ(t ′)) and {Oa} is some set of objective
operators. These developments invite extension:

Question 16. Can a monotonically convergent algorithm be found to solve the quan-
tum optimal control equations for arbitrary objectives? Can algorithms be found that
converge faster than quadratically?

A large body of numerical studies provides examples of solutions to the quan-
tum optimal control equations. However, none of this work has illuminated the general
behavior, stability, and classes of solutions to the quantum optimal control equations
(14)–(16) (here, by classes of solutions we mean the qualitative notion of groups of solu-
tions with particular properties, such as nondispersivity, periodicity, etc.). Furthermore,
although there exists a broad literature on the subject of nonlinear Schrödinger equations
(NLS’s), e.g., [74–76], this mathematical analysis has not explicitly been extended to the
allied quantum optimal control equations. This suggests the following question:

Question 17. What mathematical techniques can be applied to the quantum optimal
control equations to reveal the classes of behavior admitted by their solutions?

The possibility that unusual behavior can be expected is evident from one study which
showed that the quantum control equations can be made equivalent to the standard NLS
under suitable conditions [77] (see also section 3.3).
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The topics and questions raised to this point have not explicitly treated the impact
of random environmental influences and the finite precision of the laboratory apparatus
on the evolution of controlled quantum systems. In general, noise in C(t) is thought of
as harmful in the context of trying to achieve control objectives. However, hints from
the subject of stochastic resonance [78] suggest that under suitable conditions noise may
possibly have beneficial effects, such as allowing the achievement of a particular level
of control using smaller total field fluence than that required for the noise-free system.
It remains an open problem to answer:

Question 18. Under what, if any, conditions can the presence of noise assist in the
achievement of quantum control objectives? What are the possible physical mechanisms
behind these effects?

The next section will return to the standard view of environmental influences, fluctua-
tions in the laboratory apparatus, and other uncertainties as being undesirable. The focus
will be on methods for understanding and minimizing their effects on quantum control
systems.

2.2.2. Robust designs
Due to imperfect knowledge of system Hamiltonians and coupling operators as

well as the limited precision and presence of background fluctuations inherent to any
laboratory apparatus, it is impossible to perfectly reproduce either optimally designed
control laws or the exact specifications under which they were designed. Hence, it is
important to study the sensitivity of the control objective or cost functional to random
variations or uncertainties in the operators and initial conditions describing the evolution
of the system. There is extensive work on the general topic of robust optimal control in
the engineering [79–81] and quantum control [82,84,86] literatures.

A general approach to assessing robustness and stability in quantum control has
been considered [82] based on introducing a stability operator S, the kernel of which
is related to the curvature δ2J [ε]/δε(t)δε(t ′) of the cost functional with respect to the
control law. Considering the curvature is necessary as the null value of the first order
variation δJ [ε]/δε(t) = 0 defines the optimal solution. Conditions for robustness and
optimality of the control solutions can be expressed in terms of the spectrum of S, and
this analysis can also reveal qualitative relationships between the various terms in the
cost functional and the robustness/optimality features of the control solutions. The open
questions suggested by this analysis include questions 19 and 20:

Question 19. As the eigenvalues of the stability operator S are an important determinant
of the stability and robustness of an optimal control solution, can the dominant charac-
teristics of a system Hamiltonian, coupling operators, and cost functional be established
that determine these eigenvalues?
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Question 20. Will the classical and quantum formulations of the same molecular scale
control problem exhibit distinctly different stability behavior?

The introduction of a penalty term of the form

J3 =
∫ T

0
W3

∣∣〈ψ(t)∣∣O ′∣∣ψ(t)〉∣∣2 dt, (17)

where O ′ is an arbitrary positive definite operator, was observed [82] to improve the
robustness of optimal control solutions. The presence of J3 can bias the system to satisfy
demands tangential to the true control objectives, causing an effective “drag” along the
way to the goal. Hence, the effect of J3 may be loosely interpreted as analogous to the
presence of viscous drag in stabilizing a classical mechanical system about a weakly
stable point in its phase space. However, the possible stabilization mechanisms have not
been carefully studied or characterized, leaving the open question:

Question 21. Can a complete mechanism be put forth explaining how the introduction
of suitable ancillary objectives may stabilize the solutions to quantum optimal control
problems?

The robustness effects of penalty operators with more specific forms than that given
by equation (17) may be easier to intuit. For example, the term

Js =
∫ T

0
dt

(
δ〈O(T )〉
δε(t)

)2

(or analogous expressions with higher derivatives) may be used [83] to reduce the sen-
sitivity of the achieved control objectives at the target time T to uncertainty in control
fields. Analogs of this penalty term for the sensitivity of the target objective to uncer-
tainty in other variables were found [84] to be capable of reducing the sensitivity to
errors in force constants and other model parameters.

Design of robust quantum optimal control solutions can be achieved through
the min–max procedure, which involves simultaneously maximizing the effects of an
energy-bounded disturbance and minimizing the objective functional (9). Solutions to
such min–max problems represent the best possible control under the worst possible
energy-bounded disturbances. For linear dynamical systems the min–max problem be-
comes H∞ control, which has an exact solution through the Ricatti equations. This
procedure is well-developed in engineering control theory [85], and it has been applied
to robust control designs for selective vibrational excitation in molecular harmonic os-
cillators [37]. In general, the min–max technique tends to give conservative robust solu-
tions as it works against the worst possible bounded disturbance, but encountering this
worst disturbance in practice is unlikely. This point suggests the following question for
consideration of a less extreme class of disturbances:
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Question 22. What are the robustness characteristics of solutions to a “mollified” min–
max analysis, in which the disturbances are expressed by a distribution of the most likely
fluctuations in the environment?

Explicit modeling of this or related circumstances may involve stochastic versions of
the Schrödinger equation (3). The resulting analysis should give designs that are robust
under more realistic conditions than those modeled in a worst case scenario.

The conclusions of min–max studies [86] reinforce the importance of question 22.
For a diatomic molecule modeled as a Morse oscillator, the robustness properties of so-
lutions to the min–max equations were compared with solutions to the standard Euler–
Lagrange equations (cf. (14)–(16)) derived without any robustness considerations. While
the min–max controls performed better under the application of the worst-possible dis-
turbance (for which they were designed), they did not necessarily outperform the stan-
dard Euler–Lagrange solutions under disturbances other than the worst case. For ex-
ample, min–max control fields were demonstrated to be significantly less-robust than
standard Euler–Lagrange control fields to sinusoidal perturbations with the same am-
plitude constraints as the worst-case disturbance. This underscores the importance of
designing control laws that are robust to the particular class of disturbances most likely
to occur.

Even in cases where the robustness properties of two designs are quite distinct,
simulations have shown [37] that robust control designs may differ only slightly from
nonrobust designs (i.e., the L2 norm of the difference between the two control laws may
be small). This similarity suggests that robustness properties in some cases may result
from very subtle effects. It was also noted [37] that the relationship between the robust
field and the standard design (i.e., created without robustness considerations) can take
two forms: the robust field can be either a scaled, self-similar version of the standard
field (which may be described as achieving robustness by “speaking louder”) or can
have a qualitatively different form. At present, no means exists to predict in general
when either of these two cases will occur, suggesting the question:

Question 23. Can features of optimal control problems be identified that predict when
control fields designed for robustness will be self-similar to those designed without ro-
bustness considerations?

It is suggestive that self-similar robust fields will exist for weak disturbances, but there
is presently no proof of this conjecture.

The results of questions 19–23 may form part of the answer to the central question:

Question 24. Can a general analysis be performed on the sensitivity of the cost func-
tional to variations in the field free Hamiltonian, coupling operator, and control field
to determine in what cases to expect significant robustness to environmental fluctua-
tions?
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For example, the potential and dipole operators critically determine the control
law, and the answers to question 24 should provide information into how errors in these
functions influence the control quality.

The robustness of coherences for controlled quantum systems in mixed states (i.e.,
the robustness to decay of the off-diagonal terms in the density operator) is a topic of
special interest. The effects associated with this decay are especially important in the
quantum information sciences [87], where the development of methods to curtail de-
coherence in information processing algorithms is an active area of research [88,89].
A relevant contribution would be the combination of optimal control techniques with the
ideas of decoherence-free subspaces [90–92], in which dynamics are invariant to inter-
ference that would otherwise cause coherences to decay (this is related to the general
notion of disturbance decoupling in mathematical systems theory, cf. [22]. The result
would be control solutions that maximize coherences while simultaneously minimizing
an objective cost functional. While in some cases decoherence free subspaces may not
rigorously exist [93], these considerations suggest seeking a general formulation:

Question 25. Can a min–max optimal control problem be posed which maximizes co-
herence (i.e., maintains the off-diagonal terms in the density matrix) while optimizing
the objective functional in such a way that solutions are restricted to lie in a particular
subspace? Can such a subspace be identified that is valid in a particular system for a
general class of objective operators?

The optimal coherence-control subspaces identified by an analysis following ques-
tion 25 could be of significance in developing a physical understanding of the mecha-
nisms of decoherence and its suppression. In particular, for systems with well-defined
decoherence free subspaces identified from the Hamiltonian, an interesting comparison
could be made with the optimal coherence-control subspaces. Other schemes are also
being considered for the dynamic manipulation of decoherence and control in the pres-
ence of dissipation [94–97].

For applications in which the persistence of coherence is not so evidently impor-
tant, a complementary line of investigation may seek to determine the general relevance
of coherence in accomplishing control objectives. In this regard a case of special interest
is the control of condensed phases. In an n-dimensional space Hn and in the presence
of rapid dephasing (which implies vanishing of the off-diagonal coherence terms of the
density matrix), equation (6) reduces to a set of rate equations for the population in the
n states. Under certain conditions, successful controls can be designed for quantum sys-
tems whose evolution is determined by these rate equations [98]. Thus, it is evident that
full coherence may not be operative in the control mechanism for some systems, and this
raises a basic question:

Question 26. Can quantitative measures of coherence be developed to assess its role in
any quantum control problem?
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The answer to this question will arise from seeking observables that are sensitive to
off-diagonal elements of the density matrix.

The application of control methods to the cooling of quantum systems is an ac-
tive area of research [38–41], and the final question of this section seeks to address the
relevant effects of uncertainties in the associated control law. There are several means
of defining cooling on the molecular scale. One typically utilized criterion [39] aims
to minimize the von Neumann entropy σ = −∑k pk logpk corresponding to some ob-
servable O (such as the system Hamiltonian); here, pk is the probability that the system
is in the kth eigenstate ofO. Another system cooling criterion is to increase in the Reyni
entropy Tr(ρ2) [39]. With both measures, maximal cooling is achieved when all but one
of the pk are zero (i.e., achievement of a pure state). Thus, the ability to completely cool
a molecular system is likely to be a challenging task in the presence of laser noise. For
the purposes of molecular cooling, a laser control with noise fluctuations may be thought
of as having an effective nonzero “temperature”. Thus a basic question arises about the
degree of molecular cooling possible by means of a noise contaminated control field:

Question 27. Can lower bounds be established beyond which a laser characterized by
nonzero noise fluctuations cannot cool a quantum system?

2.2.3. Tracking theory
There generally exist a multiplicity of solutions to the quantum optimal control

equations (cf. question 14), suggesting that it may be possible to predefine a selected
path between the initial and final conditions satisfying the control objectives (1). The
existence of such a path exactly matching the conditions at both ends assumes that the
system is controllable. The path can be implicitly defined by the expectation values y(t)
of a tracking operator Otr:

y(t) = 〈ψ(t)∣∣Otr

∣∣ψ(t)〉, t ∈ [0, T ]. (18)

The quantum tracking control problem [99–102] may be viewed as a special case
of optimal control theory with the target being the expectation value of Otr over the
entire time interval. (In some cases it may be physically attractive to only require that
limt→T Otr(t) = O, whereO is the objective operator whose expectation value is desired
at T .) Given the path defined in equation (18), the tracking algorithm for determining
the control law may be derived from the Heisenberg equation of motion

ih̄
d〈ψ(t)|Otr|ψ(t)〉

dt
= 〈ψ(t)∣∣[H,Otr]

∣∣ψ(t)〉+ 〈ψ(t)∣∣∂Otr

∂t

∣∣ψ(t)〉. (19)

With a control law of the form C(t) = −µε(t) and the assumptions that Otr is inde-
pendent of time along with [µ,Otr] �= 0, equation (19) can be rewritten to solve for the
electric field:

ε(t) = ih̄ dy/dt − 〈ψ(t)|[H0,Otr]|ψ(t)〉
〈ψ(t)|[µ,Otr]|ψ(t)〉 . (20)
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This equation may be substituted into the Schrödinger equation (3), which then can be
numerically solved for ψ(t); substituting ψ(t) back into equation (20) gives an explicit
expression for the required control law. One important feature of this technique is that it
requires only a single numerical solution of the Schrödinger equation, as opposed to the
iterative methods of standard optimal control.

Given freedom in the selection of y(t), one might unknowingly choose a track that
generates one or more singularities, or events at which the denominator of the control
field in equation (20) vanishes. This type of singularity may be classified as trivial [103]
if it exists for all t ∈ [0, T ]. Trivial singularities may be removed by formulating a track-
ing equation analogous to equation (20) for control of the kth time-derivatives of y(t).
A rank index may be assigned to each tracking singularity by determining the small-
est order kr for which the corresponding tracking equation has no trivial singularity; if
the rank index is infinite, then the track–system pair is uncontrollable. Otherwise, any
remaining (isolated) singularities may be treated as nontrivial singularities of some rela-
tive order knt [103]. The magnitude of the disturbance to the trajectory resulting from a
nontrivial singularity depends inversely on the magnitude of the derivatives ∂iy/∂ti for
i � knt evaluated at the singularity. This partially explains the effects of singularities on
quantum tracking control, and invites the question:

Question 28. Can a non-iterative algorithm be developed to sense the occurrence of a
forthcoming singularity and accordingly alter the path to avoid the momentary singular-
ity while eventually reaching the objective?

Several extensions of exact inverse tracking which relax demands that could oth-
erwise produce physically unreasonable fields have been developed [104]. The first of
these methods is local track generation, in which the problems associated with an a priori
trajectory design are avoided by letting the track depend on the evolving quantum state:
y(t) = y(ψ(t)). This approach is especially useful when the control objectives are not
specifically defined by target operator expectation values as in equation (1), but rather
can be expressed as the production of some qualitative change in a system. A second
method is asymptotic tracking, in which the operator Otr is modified to allow an as-
ymptotic approach to possibly singular trajectories. Finally, in the competitive tracking
technique a cost functional is defined whose minimization produces a solution optimally
matching a number of trajectories for different tracking operators as well as minimiz-
ing the field fluence or satisfying other control objectives. There is considerable room
for further development of the tracking procedure guided by the attraction of perform-
ing only one solution of the Schrödinger equation to achieve a control design. Moreover,
thus far tracking control has only been applied to the wave function formulation of quan-
tum mechanics. A significant extension would be to treat mixed states:

Question 29. Can quantum tracking control be extended to the density matrix formula-
tion?
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In this context, the expectation value 〈Otr(t)〉 = Tr(ρ(t)Otr) would be followed and
the Schrödinger equation would be replaced by equation (6), with the possibility of
additionally including decoherence processes.

2.2.4. Classical mechanics formulations
Up to this point almost all of the questions in this paper have focused on quantum

dynamics descriptions of atomic and molecular systems. Classical modeling of quan-
tum systems is a common and often successful technique, and it should have a level
of applicability in molecular control. The next set of questions attempts to assess this
applicability, or the quantum character of molecular scale control. Nonclassical char-
acteristics of dynamical behavior include tunneling, quantization of energy levels, and
interference processes, suggesting the question:

Question 30. What characterizations of nonclassical behavior are relevant to defining
the quantum nature of a control problem? Can some of these measures be used to es-
timate the loss of reliability (i.e., defined upon comparison to the analogous quantum
system response to the classically designed field) in resorting to the classical optimal
control formulation?

Some aspects of this question have been addressed [105], where quantum Cq(t)

and classical Cc(t) control laws corresponding to equivalent representations of specific
control problems are compared. The equations of motion analogous to equation (3) are:

dqli
dt
= ∂H
∂pli
,

dpli
dt
= −∂H

∂qli
, (21)

and expectation values for the classical system are given by

〈Oc〉 =
Nc∑
l=1

2lO(ql,pl), (22)

where i ranges over the particle coordinates, l indexes initial conditions (ql(0), pl(0)),
and the weights 2l for the Nc initial conditions are chosen to mimic as best as possible
the probability distribution function for the corresponding quantum system. Here, O is
a classical observable corresponding to its quantum analog. It should be noted that the
ordinary differential equations in (21) for some cases may be more expensive to solve
than their quantum counterpart in equation (3). One motivation for considering classical
optimal control design is for the physical insight possible with classical mechanics.

Optimal control theory has been used [105] to separately design a control field ε(t)
that minimizes the difference between 〈O〉 and 〈Oc〉 and the difference between each of
these expectation values and the control objectives on T . For the example of a Morse
oscillator, it was found that an optimal control law designed in this fashion produced
very close agreement between 〈O〉 and 〈Oc〉. This result suggests that in some cases
classically-designed controls can also be successful as quantum controls. In related
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work [106], a method was developed for determining potentials under which evolv-
ing classical and corresponding quantum systems give similar values of classical and
quantum observables; the approach met with considerable success for the control of
dissociative flux and displacement. These developments inspire the question:

Question 31. For what general classes of Hamiltonians and control objectives can the
quantum control problem be adequately addressed using the classical equations of mo-
tion?

Because interference itself is a nonclassical phenomenon, questions 30 and 31 are related
to the considerations of decoherence in the previous section.

3. Laboratory achievement of closed loop control

The design of control laws poses interesting theoretical challenges, and the prac-
tical motivation for such a task is to accomplish successful control in the laboratory. In
this spirit, this section discusses the conceptual and theoretical aspects of laboratory op-
erations in which information about the evolving quantum systems is used to improve
or define effective control laws. Section 3.1 will cover the technique of quantum learn-
ing control, which is increasingly proving to be the most efficient method of practically
achieving many control objectives, especially in complex quantum systems. Sections 3.2
and 3.3 discuss aspects of feedback quantum control. Learning and feedback control are
closed loop experimental procedures aimed at achieving control even in the presence of
Hamiltonian uncertainties and laboratory disturbances.

3.1. Quantum learning control

The computational design of a control law to meet a physical objective requires
(i) explicit knowledge of the system Hamiltonian and (ii) the ability to numerically solve
the quantum control equations at least once (in the case of tracking control) or many
times for convergence to an optimal solution. In practice, however, these requirements
can rarely be met. If the system to be controlled is sufficiently complex (e.g., a poly-
atomic molecule), it is likely that the Hamiltonian will be only approximately known
and the corresponding quantum design equations can only be solved under serious ap-
proximations. In light of these limitations, a completely different and practical approach
to the control of quantum dynamics phenomena was developed [107]. In this quantum
learning control technique, the laboratory quantum system in itself serves as an analog
computer to guide its own control. This approach addresses the requirements of (i) and
(ii) above: a physical quantum system can solve its Schrödinger equation in real time and
with exact knowledge of its own Hamiltonian, all without computational cost to the user.
Hence, the burden of knowing the Hamiltonian and solving the Schrödinger equation is
shifted over to a laboratory effort with a learning algorithm guiding the control experi-
ments. The number of physical/chemical systems treated in this way is growing rapidly,
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and in many cases it is easier to do the experiments than perform the designs. However,
this approach can still benefit from even approximate control designs to start the labo-
ratory learning process, and theory also has an important role to play in introducing the
proper stable and reliable algorithms to make the experiments successful.

In summarizing the methodology of quantum learning control, we will take the set
of objective times in (1) as discrete and finite: T = {ti: i = 1, . . . , n}. The first step
is to prepare the laboratory quantum system in a convenient initial state ψ(0) = ψ0 or
distribution of incoherent states specified by ρ(0). Next, the system is allowed to evolve
under its Hamiltonian and some initial trial control law C1

0(t : t ∈ [0, t1]) applied in the
laboratory. At the time t1, a measurement of the corresponding control objective(s) is
made. The quantum system (perturbed by this measurement) is then discarded, and the
control law may be updated toC1

1(t : t ∈ [0, t1]) based on the information gained through
this measurement. The method and the frequency with which the control law is updated
depends on the specific learning algorithm being used (e.g., as described below, with a
genetic algorithm the control law is updated after some multiple of Npop experiments in
each time interval).

This updating continues until the learning algorithm has converged to some final
control law C1(t : t ∈ [0, t1]). At this point, a new initial control law C2

0(t : t ∈ [t1, t2]) is
defined on the next time interval, and an identically-prepared quantum state (ψ(0) = ψ0)

is allowed to evolve under C1(t : t ∈ [0, t1]) ∪ C2
0(t : t ∈ [t1, t2]). The procedure is

repeated for the remaining n−1 timesteps. In general, physically realizable control laws
must be continuous in time, so the Ci are constrained to match on their boundaries. At
the conclusion of the process, a control law C(t : t ∈ [0, tn]) =⋃n

i=1 C
i(t : t ∈ [ti , ti−1])

will be determined that achieves the objectives (1) within the convergence bounds of the
learning algorithm.

The methods most widely used to accomplish the updating of learning control laws
are genetic algorithms (GAs) [108], although other learning algorithms could be used.
A GA involves the evolution of successive generations of control laws from their parents,
in some fashion mimicking biological evolution. Each trial control field is digitized to
form a gene which is part of an overall population subject to evolution in the laboratory in
search of an optimal control to meet the proposed objectives. Specifically, experiments
are performed in which the quantum system evolves under each of the Npop members
of a control law “population” {lCkj (t : t ∈ [tk−1, tk]); l = 1, . . . , Npop}, where j is the
generation number and k indicates the sequential time interval on which the population
is defined. The “fitness” of the control law lCkj (t : t ∈ [tk−1, tk]) is evaluated based on
the degree to which the control objective(s) are achieved, and the fittest control laws
are preserved, crossed over, or randomly mutated in some prescribed fashion in the next
generation. The cross over operation entails recombining complementary sections of the
control laws. This procedure is continued until the fittest members of the control law
population achieve the control objectives to the required extent. Once this is achieved,
the index k is increased and the method is repeated for the next time interval (although
all the experiments carried out thus far, e.g., [1,2,4–6,109,110], have been done with a
single time interval t ∈ [0, t1], t1 = T ).
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The power of the GA lies in its ability to globally search the space of control laws
and discover solutions that possibly may be highly nonintuitive. This directed search
takes advantage of the ability to perform a great number of distinct control experiments
in a short period of laboratory time, and the closed loop technique has been demonstrated
for a wide variety of quantum systems and control objectives. The method has also been
shown to have surprising convergence properties. For example, it is observed in simula-
tions [107] and the experiments, e.g., [1,2,4–6], that the GA algorithm can converge for
a set of randomly constructed initial control law populations. These results suggest the
question:

Question 32. Can the necessary physical criteria be identified in order for learning con-
trol algorithms to rapidly converge from arbitrary initial control laws? To what extent
will the convergence properties of these algorithms be improved by incorporating trial
designs or other physical information into the initial fields?

The choice of cost functionals used in the experiments has the same freedom as for
computational optimal control theory except that in laboratory learning control there is
no direct access to the wave functions. At present the experiments have considered only
the final target in the cost, but other criteria could be included giving rise to a possible
enhancement to the procedure:

Question 33. Considering that the quantum optimal control problem generally has
many solutions, what are the effects of incorporating more extensive fitness criteria (be-
sides the target) into genetic algorithms to select against undesirable aspects of control
fields or other observed dynamical features?

Simulations have considered the effects of laboratory errors (modeled as distor-
tions, or transformations, of true input and output data) and noise upon the learning
control process [111,112]. In [112], input errors were modeled by performing various
functional transformations on the control laws lCkj (t : t ∈ [tk−1, tk]) used in simulated
experiments, while output errors were represented by transforming the expectation val-
ues of the control objectives corresponding to these experiments. In general, if the input
errors are systematic and the output errors are random, they may not significantly affect
the ability of the learning algorithm to find an optimal solution. The fitness of the fi-
nal control laws found by the GA are also demonstrated to be reasonably insensitive to
noise in control fields. These results are based on very limited studies of simple model
systems, and they invite further investigation:

Question 34. Can stability analyses be performed on closed loop quantum learning al-
gorithms under uncertainties and disturbances in the measurements and control fields for
general classes of quantum systems and control objectives?

Such an analysis could give insight into how best to operate the laboratory experiments.
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In principle, any optimization algorithm can be applied to quantum learning con-
trol. For example, gradient descent and simulated annealing algorithms have been ex-
plored in simulations [111], but the GA outperformed them in several test cases. How-
ever, this subject has not received a thorough examination:

Question 35. Do there exist algorithms that converge with greater efficiency or robust-
ness than the genetic algorithm for certain classes of quantum mechanical learning con-
trol problems?

In treating question 35 it is important to consider the ability to perform very large num-
bers of quantum control experiments, which may overcome certain algorithmic short-
comings found under more common conditions. This ability is almost unprecedented in
other applications of learning algorithms.

Another approach to quantum learning control is provided by the use of input→
output mapping techniques [113,114]. These methods develop an effective map between
the inputs (i.e., the parameters or features defining the control laws) and the outputs (i.e.,
the expectation values of objective operators). A map from the control input space C to
the space of possible expectation values may be determined directly from the laboratory
input and output data; a series of these maps may be needed to cover a sufficiently large
portion of C. The control law that optimally satisfies the objectives can be identified from
these maps using a suitable learning algorithm. Logical next steps in the development of
these methods include answering:

Question 36. What methods can be used to extend the linear input–output learning con-
trol techniques developed in [113,114] to generate nonlinear maps?

Question 37. Can a robustness analysis of maps combined with learning control algo-
rithms be performed to study the convergence of these algorithms in the presence of
noise and measurement uncertainty?

Progress toward answering question 36 has recently been made in [117]. In con-
sidering questions 36 and 37 a central issue is establishing the efficiency of mapping
techniques as compared with eliminating the maps altogether in favor of having the
learning algorithm directly interfaced with the laboratory experiments. Beyond issues
of efficiency, mapping techniques may offer the additional benefit of providing physical
insight into control mechanisms based on the observed map structure.

3.2. Feedback quantum control I: The feedback nonlinear Schrödinger equation in the
absence of measurement effects

This section concerns the behavior, stability, and classes of solutions to the (de-
terministic) continuous-feedback Schrödinger equation, where the algorithm operates in
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a fashion such that observations do not disturb the control process (i.e., the absence of
measurement effects). In the limit that the interval between successive measurement
times {t1,t2,...} ≡ Tc tends to zero and other suitable conditions, the continuous-feedback
Schrödinger equation conceptually follows from an infinite sequence of laboratory ex-
periments. In this approach, the probabilistic effect introduced by a measurement at
a time ti is avoided by “discarding” the quantum system after it has been allowed to
evolve on the interval [0, ti ] under the control law C(t) = ⋃

k�i C
k(t), where the do-

main of each Cj is [tj−1, tj ]. After the measurement is performed at ti , a new quantum
system is prepared in the state ψ0 = ψ(0), and the process is repeated on the interval
[0, ti+1]. Since ψ(t) is not itself observable, a physically plausible feedback control law
based on the measurements taken at ti depends on ψ(t) through the expectation values
of some observable Oc:

C
(〈
ψ(t)

∣∣Oc

∣∣ψ(t)〉) = C(ψ(ti)), ti ∈ Tc. (23)

In practice, an approximation to the limit of infinitely many measurements discussed
above could be attained with sufficiently-small spacing between the ti and the use of
interpolation to calculate the continuous function 〈Oc(t)〉. In general, the procedure is
a special type of learning control where the control law is made to explicitly depend on
the observation.

The evolution of the continuous-feedback quantum system is described by the
equation

ih̄
∂ψ(t)

∂t
= [H0 + C

(〈
ψ(t)

∣∣Oc

∣∣ψ(t)〉)]ψ(t). (24)

Different choices of C(·) andOc may result in equation (24) having qualitatively diverse
behavior. An interesting case exists [77] under the assumptions (i) that Oc = δ(x − x′)
is the Dirac delta operator, and (ii) that the control law is C(|ψ(x, t)|2) = −γ |ψ(x, t)|2,
where γ is a positive constant. With H0 = −(h̄2/2m)∇2, the resulting equation

ih̄
∂ψ(x, t)
∂t

= −
[
h̄2

2m
∇2 + γ ∣∣ψ(x, t)∣∣2]ψ(x, t) (25)

admits dispersion-free solutions (i.e., it preserves |ψ(x− vt)|2) and also solitonic solu-
tions under suitable conditions [75,76]. These types of stable solutions may be signif-
icant in many applications of quantum control, including quantum information theory.
Equation (25) may also be derived from the quantum optimal control formalism under
the assumptions stated above; thus, dispersion free control solutions are optimal under
these same conditions.

The possibility of dispersion free dynamics with special control Hamiltonians does
not violate the inherently dispersive nature of quantum mechanics as normally encoun-
tered: when closed loop control is present, the Schrödinger equation becomes nonlinear
and it becomes possible to manipulate dispersion. In descriptive terms one can think of
the control actively “batting about” the evolving wave packet to keep it together as it
evolves. The existence of such a control law inspires the question:
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Question 38. What general classes of control Hamiltonians H0 + C(〈Oc(t)〉) can be
found that exhibit nondispersive or other distinct types of qualitative behavior of practi-
cal interest?

Except for tracking control in equation (20), very little work has been done on
control laws of the general form in equation (24). Valuable insight might be gained from
such studies as well as the possibility of identifying particularly interesting or effective
control laws.

3.3. Feedback quantum control II: The feedback nonlinear Schrödinger equation in the
presence of measurement effects

This section is concerned with the effects of taking real-time measurements on a
single quantum system while it is being controlled over the interval [0, T ] (here, “sin-
gle” implies that the sequential “measure and discard” approach of the previous section
is abandoned). This scenario naturally arises in the implementation of a feedback con-
trol law where measurements are taken on a discrete set of times TM = {ti} and M is an
observable operator: the control law may be written as C(〈ψ(ti)|M|ψ(ti)〉) = C(ψ(ti)),
ti ∈ TM . Feedback may also augment learning or optimal control methods by providing
real-time information about the evolving quantum system for the stabilization of partic-
ularly sensitive objectives (e.g., locking a quantum system around an unstable point on
its potential energy surface). There exist well-established procedures for determining
feedback control laws based on measurements of evolving deterministic and stochastic
classical systems in engineering control (e.g., [22,116]) and it is possible that many of
these methods may be adapted to quantum mechanical control problems.

Extensive consideration has been given to the effects of measurements on evolving
quantum mechanical systems, including analysis in the contexts of continuous feedback
and the control of quantum systems by homodyne detection (i.e., measurement of a
component of the light field) [117–126]. These works generally treat the more difficult
problem of random measurement times; here, we give only an elementary discussion of
ideas relevant to feedback control with measurements taken at a determinisitic, discrete
set of times TM = {ti} and suggest some of the most basic accompanying questions.

A postulate of quantum mechanics states that a perfectly precise measurement of
an operator M must both yield one of the eigenvalues of the operator and result in a
disturbance such that ψ collapses to lie within the associated eigenspace of the opera-
tor. If the spectrum of M is degenerate we replace M by a complete set of commuting
operators (CSCO) [127] in what follows so that each possible measurement specifies a
unique eigenstate of the quantum system. The measurement process introduces a sto-
chastic element into the evolution of the quantum system, with the probability that a
particular eigenvalue of M is observed depending on the state of the system at the time
of the measurement. The analysis below assumes that ψ evolves in an n-dimensional
space Hn.
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The quantum trajectory description of the evolving system expressed here is a spe-
cial case of more general treatments [118]. The quantum system is initially taken to be
in the pure state

ψ(0) =
n∑
k=1

ck(0)ψk, (26)

where the ck are time-dependent coefficients and the {ψk} are the eigenstates of M.
In addition, we assume that in the absence of measurement effects the system evolves
under the Hamiltonian H(t) = H0(t) + C(t), and that all measurements are perfectly
precise. The probability that such a measurement at time ti will yield the eigenvalue λk
is denoted by Prob{λ(ti) = λk} ≡ Pti (λk) and the (equivalent) probability that the state is
ψk immediately after the measurement at ti is denoted by Prob{ψ(ti) = ψk} ≡ Pti (ψk).

With these definitions, we have

Pt1(λk) = Pt1(ψk) =
∣∣ck(t1)∣∣2, (27)

where the ck(t1) are the coefficients of the state function at the instant of the first mea-
surement. These coefficients are defined by

n∑
k=1

ck(t1)|ψk〉 = T exp

[
1

ih̄

∫ t1

0
dt ′
(
H0
(
t ′
)+ C(t ′))]∣∣ψ(0)〉, (28)

where T is the time ordering operator. Following [118], we let |ψc(ti)〉 be the (pure)
quantum state conditioned on perfect knowledge of the measurement at time ti ; for in-
stance, the state |ψc(t1)〉 is a random variable with distribution given by equation (27).
These definitions may be extended for the remainder of the ti :

Pti+1(λk) = Pti+1(ψk) =
∣∣ck(ti+1)

∣∣2, (29)

where ck(ti+1) are random variables defined by

n∑
k=1

ck(ti+1)|ψk〉 = T exp

[
− 1

ih̄

∫ ti+1

ti

dt ′
(
H0
(
t ′
)+ C(t ′))]∣∣ψc(ti)〉 = ∣∣ψ(ti+1)

〉
. (30)

Here, there is no subscript c in the last equality, because |ψ(ti+1)〉 represents the state of
the system at the instant before the measurement at ti+1.

Introducing the projection operators

Fk(ti+1) = |ψk〉
〈
ψ(ti+1)

∣∣, (31)

the evolution of the particle under the measurements may be written as a “stochastic
quantum map” [118] between states at the ti+1:

∣∣ψc(ti+1)
〉 = F(ti+1)T exp

[
− 1

ih̄

∫ ti+1

ti

dt ′
(
H0
(
t ′
)+ C(t ′))]∣∣ψc(ti)

〉
, (32)
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where the probability Prob{F(ti+1) = Fk(ti+1)} ≡ Pti+1(Fk(ti+1)) that the projection at
time ti is Fk(ti) (i.e., onto the kth eigenstate) is given by equation (29):

Pti+1

(
Fk(ti+1)

) = Pti+1(λk) = Pti+1(ψk). (33)

We note that equation (32) has both deterministicH0(t
′) and random F(ti+1),C(t ′) terms

(where the latter are assumed to be a function of the random state ψ(t)).
The state of the stochastic system at time t is then described by the density matrix

(here, simply a sum of pure states)

ρ(t) =
Np(t)∑
l=1

pl
∣∣ψl(t)〉〈ψl(t)∣∣, (34)

where pl is the probability that the lth possible trajectory ψl(t) was realized on a given
solution of equation (32). Here, Np(t) is the number of these possible trajectories
taken up to time t . The number of measurements that has taken place before time t
is m(t) = card({ti : ti � t}), and each combination of these measurements generally
defines a unique trajectory so that Np(t) = m(t)n. In general, the pl and, hence, the den-
sity matrix given in equation (34) could be approximated by a Monte Carlo simulation
of equation (32): if NMC states |ψa(t)〉 were produced in an ensemble of simulations,
then

ρ(t) ≈ 1

NMC

NMC∑
a=1

∣∣ψa(t)〉〈ψa(t)∣∣, (35)

where the expected accuracy of the approximation increases with NMC at a rate depend-
ing on the pl and |ψl(t)〉〈ψl(t)|.

In the special case that C(ψ(t): t ∈ [ti , ti+1]) depends only upon ti and the value
〈M(ti)〉 of the most recent measurement, equation (32) defines a Markov chain [128]
with (generally) nonstationary transition probabilities. For any ti and each k, all paths
to |ψ(ti)〉 = |ψk〉 then lead to the same evolution on (ti, ti+1), so that summing over
Np(t) = m(t)n trajectories is redundant and we may instead set Np(t) = n. The pl may,
therefore, be calculated from m × n2 transition probabilities between the states |ψk〉.
With the additional assumptions that the ti are evenly spaced and that the control law is
time-independent, the Markov chain becomes stationary with n2 transition probabilities
generating the evolution of the system.

If the measurement process does not completely determine the quantum states (or
if the system is initially in a mixed state), the measurement-conditioned system may no
longer be described as a sum of pure states as in equation (34). This could occur, for
example, (i) due to imprecision in the measurement process resulting from equipment
limitations or environmental fluctuations, or (ii) if M were not a CSCO, in which case
projection after measurement would be into a (degenerate) space spanned by multiple
eigenstates. In such cases, an alternative formulation to equation (30) involving a sto-
chastic map between conditioned density operators ρc(ti) is required [118].
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Each measurement in feedback quantum control involves an information trade-
off: the system is perturbed away from the deterministic Schrödinger equation, but a
measurement is used to update the control law. This raises a question similar to that
suggested in [11]:

Question 39. In what general classes of problems does incorporating feedback mea-
surements assist the achievement of quantum control objectives? In what cases does it
hinder the achievement of these objectives? More specifically, can it be shown for gen-
eral classes of problems that taking a certain number of measurements improves control
(with reasonable assumptions including the final time T being sufficiently large)? Does
there exist a (problem-dependent) frequency and timing of measurement to optimize the
feedback quantum control problem?

Another question relating to this issue of information tradeoff is:

Question 40. What kind of weak observations give useful information about a quantum
system while introducing only minimal perturbations?

As a physical example of a weak observation, consider measurement of a few atoms
of a BEC cloud, which introduces minimal disturbance while characterizing a certain
measure of the entire system [10]. The nature of weak observations becomes more subtle
in the limit of the system consisting of a single atom or molecule. A related question is:

Question 41. What are the effects of measurements on the feedback control process for
systems satisfactorily described semiclassically?

This question opens up consideration of possible gray scale behavior ranging from the
classical limit where a measurement can be made with vanishingly small impact on the
system out through semiclassical behavior and then to the full quantum limit. If some
of the issues in question 39 are severely restrictive for quantum feedback control, then
it is suggestive that in the semiclassical limit (which generally describes intramolecular
motion well) a window of feedback events may exist before the continuing observational
disturbances cause loss of control.

Returning to the most basic issue of control, it would also be interesting to investi-
gate:

Question 42. Under what conditions can controllability be proved for feedback-
controlled quantum systems?

3.4. Closing the control loop in laboratory hardware through machine feedback

Recent work in acoustics illustrates the possibility of focusing reflected waves back
upon their sources [129,130] in an iterative fashion in order to enhance the intensity in
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the focal volume. In this work, an array of speaker/microphone units surrounding the
target sends amplified, time-reversed acoustic wave packets recorded as reflections of a
previous pulse; the time reversal process ensures that these waves focus on the point from
which the previous pulse was emitted with a degree of enhancement on each iterative cy-
cle. An analogy of this technique relevant to quantum mechanics might be “reflection”
through special measurement devices (e.g., ideally capable of full three dimensional de-
tection from the controlled sample) that could then send modified electromagnetic waves
precisely back to an emitting quantum mechanical source to better achieve the control
objectives. While the length scale of electromagnetic waves is too large to directly pro-
duce a focusing effect analogous to that in time-reversed acoustics, they could function
as an intermediary that excites a desired quantum interference pattern which actually
accomplishes the focusing at the atomic/molecular scale. The fundamental question in-
vited by this idea is:

Question 43. Can an array of special hardware units be designed that capture electro-
magnetic waves emanating from the quantum systems and return modified signals to
effect an “automatic” achievement of particular control objectives? For what classes of
control objectives and quantum systems might such a procedure be possible, and how
would the required modification of the electromagnetic signal be determined and cre-
ated?

This process may be fully quantum mechanical if carried out in a suitable optical cavity,
but in general the same closed loop observation/disturbance issues raised in the previous
section must be considered here.

Such a machine feedback control mechanism, if achieved, could be characterized
as self-controlling. One natural application would be stabilization of an established
quantum dynamic state, which would be a type of feedback control as discussed in
section 3.3. But, most exciting would be an apparatus that automatically directed the
evolution of a system to the desired target. The machine could be viewed as a fully au-
tomated laboratory apparatus implemented in a closed loop quantum context, with the
hardware actually being part of the system under control. At this juncture such a ma-
chine is only a gedanken process, but its potential strongly motivates an analysis of the
concept.

4. Hamiltonian identification

Knowledge of the Hamiltonian H0 and the dipole µ (or other coupling coefficients)
is required for control law design and is of fundamental importance to many other ap-
plications in chemistry and physics. Section 4.1 concerns dynamical algorithms that
invert time-dependent laboratory data to identify these operators. After a discussion of a
particular special case, it is noted that the problem of determining µ(x) or V (x) (where
H0 = K+V with K being the kinetic energy operator onH) may be generally expressed
as an explicit algorithm closely related [100] to tracking control (cf. section 2.2). The
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formulation in section 4.1 suggests that the control law producing the underlying quan-
tum dynamics can play an important role in determining the quality of the inverted data.
This observation opens up the possibility of developing a closed-loop device that would
couple dynamical inversion algorithms with laboratory machinery. Aspects of the devel-
opment of such an optimal quantum dynamics identification machine are discussed in
section 4.2.

4.1. Methods and algorithms for the inversion of quantum dynamics data

There are significant laboratory efforts toward achieving high-resolution diffraction
images of evolving molecules [131] and solid state materials. The data from such ex-
periments is the probability density function |ψ(x, t)|2 (formally, the expectation value
of the Dirac delta operators δ(x − x′)). An algorithm for inverting this type of data to
identify V (x) without the expensive requirement of numerically solving the Schrödinger
equation has been suggested [132]. The algorithm relies on Ehrenfest’s relation:∫ ∞

−∞
∇V (x)∣∣ψ(x, t)∣∣2 dx = −m d2

dt2

∫ ∞
−∞

x
∣∣ψ(x, t)∣∣2 dx, (36)

which is an integral equation for ∇V (x) with the assumption that |ψ(x, t)|2 is available
from laboratory measurements. As the equation is linear, it formally does not require
iterative methods for its solution. The attractive nature of this integral equation formu-
lation suggests seeking its possible extension to other types of data that may be less
directly related to ψ(t):

Question 44. Can non-iterative algorithms be developed for the inversion of data
〈Oh(t)〉 for observables Oh other than the Dirac delta operator?

The key step leading to the algorithm implied by equation (36) was to use |ψ(x, t)|2 to
invert 〈x〉 rather than working directly with 〈δ(x− x′)〉. Question 44 may not lend itself
to such a simple treatment, but this line of thought directly leads to the tracking inversion
approach below.

The problem of determining µ(x) or V (x)may be related ([100]; see also [133] for
a different approach) to the problem of determining the control law C(t) that will cause
a quantum system to follow a prescribed track (see figure 3). In particular, if the ex-
pectation values y(t) ≡ 〈Oh(t)〉 of a time-independent operator Oh are established from
a series of observations of an evolving quantum system, the Schrödinger equation (3)
and the Heisenberg equation of motion (19) form the pair of coupled (forward–inverse)
equations

ih̄
dψ(t)

dt
= [H0 − µ · ε(t)

]
ψ(t), (37)

ih̄
dy(t)

dt
= 〈ψ(t)∣∣[H0 − µ · ε(t),Oh

]∣∣ψ(t)〉. (38)
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Figure 3. Schematic illustration of wave packet track evolving on a potential surface (contours shown). For
control a goal may be to find the field ε(t) that will steer the track out of product channel A or B, while
for inversion the track is observed in the laboratory and the goal is to determine the potential in the regions

traveled by the track. From [100], with adapted caption.

The solution of these evolution equations may in principle be attempted for any two
unknowns. As knowledge of ψ(t) is not available in any physical problem, the wave
function will always be considered as one of these unknowns; the other may be chosen
from either ε(t),µ(x), or V (x)with the complementary pair assumed as known. The first
of these possibilities was treated in section 2.2, where the fact that the expectation value
on the right hand side of equation (38) involves only spatial integration was exploited to
write ε(t) explicitly in the (possibly singular) form of equation (20). We now turn to the
solution for µ(x) and V (x).

Considering for simplicity the one-dimensional case, equation (38) may be rewrit-
ten [100] as a Fredholm integral equation of the first type:∫ ∞

−∞
K(x; t)f (x) dx = h(t), (39)

where if µ(x) is the unknown variable,

f (x)=µ(x), (40)

K(x; t)=−ε(t) Im
{(
Ohψ(x, t)

)∗
ψ(x, t)

}
, (41)

h(t)= h̄
2

dy(t)

dt
− Im

〈
ψ(t)

∣∣OhH0

∣∣ψ(t)〉, (42)

and if V (x) is the unknown,

f (x)= V (x), (43)

K(x; t)= Im
{(
Ohψ(x, t)

)∗
ψ(x, t)

}
, (44)

h(t)= h̄
2

dy(t)

dt
− Im

〈
ψ(t)

∣∣Oh
(
K− ε(t)µ(x))∣∣ψ(t)〉. (45)
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It is apparent that there does not exist an explicit formula for f (x) analogous to
that given in equation (20) for ε(t): this difference lies in the distinct roles of space and
time in quantum mechanics. Equation (39) is ill-conditioned, and even for nonvanishing
kernels K(x; t), a unique solution may not exist. Thus, equation (39) generally requires
regularization before it can be solved for f(x). This may be accomplished, for example,
through minimization of the cost functional

J =
∫ T

0

[∫ ∞
−∞
K(x; t)f (x) dx − h(t)

]2

dt + α
∫ ∞
−∞
f 2(x) dx, (46)

where α is a regularization parameter [100] and [0, T ] is the control interval. Setting the
first variation of J with respect to f (x) equal to zero yields∫ ∞

−∞
κ
(
x, x′

)
f
(
x′
)

dx′ + αf (x) = h̃(x), (47)

which is a (regularized) Fredholm equation of the second type with

κ
(
x, x′

)= ∫ T

0
K(x; t)K(x′; t) dt, (48)

h̃(x)=
∫ T

0
K(x; t)h(t) dt. (49)

Solution of the regularized pair (37) and (47) may be accomplished using the track-
ing procedure discussed in section 2.2, with the role of ε(t) replaced by µ(x) or V (x).
The procedure consists of formally solving equation (47) for f (x) and substituting the
result into the Schrödinger equation (37) to solve for ψ(t); the process needs to be itera-
tively performed due to the nonlinear manner that f (x) and ψ(t) enter. There are many
variants on iterative methods for solving these equations and care is needed to assure
that the process is stable.

In general, the goal is to solve equations (37) and (38) with minimum of distor-
tion introduced by additional criteria; in the example above, the balance between this
objective and stability requirements is set by α, whose optimal value could be set or
approximated based on the details of the particular problem and solution method. In this
light, it may be useful to consider:

Question 45. Can (assumed) knowledge of |ψ(x, t)|2 be used to guide the regular-
ization process? For example, since the kernel κ(x, x′) is trivially singular where
|ψ(x, t)|2 = 0 ∀t ∈ [0, T ], will the quality of inversion improve if the regularization
parameter α(x) is made spatially dependent and scaled inversely with

∫ T
0 |ψ(x, t)|2 dt?

This could be accomplished, for example, by setting α(x) = (∫ T
0 |ψ(x, t)|2 dt

)−β
for

some β > 0.
An important feature of the inverse problem of solving equations (37) and (38)

for µ or V is that the evolution of the quantum system over [0, T ] which deter-
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mines κ(x, x′) is in turn governed by the applied field ε(t) in equation (37). Hence,
it should be possible to determine a control law which allows inversion with maximum
stability to produce optimal dynamical regularization. This comment opens up the more
general notion of optimally controlled inversion introduced in section 4.2.

4.2. Dynamical regularization and the realization of an optimal dynamics
identification machine

As noted in the previous section, because K(x, x′) in equation (48) is trivially zero
in spatial regions which are not explored by the wave function at some time during the
control period [0, T ], meaningful inversion of equations (37) and (38) may only be ex-
pected if the control law ε(t) steers the wave function to be nonzero in the domain in
which µ or V is to be determined. It is important to note that the formulation of equa-
tions (37) and (38) may be extended to incorporate multiple realizations of the control
law εj (t) [100], as this process allows for the inclusion of data yj (t) from multiple ex-
periments that, taken together, may provide the desired evolution over the entire spatial
domain of interest.

For dynamical reasons the kernel κ(x, x′) may still produce a singular operator in
equation (47) where it is significantly non-zero. The additional dynamical regularization
conditions required to resolve this problem are not immediately apparent, suggesting the
question:

Question 46. What general conditions on the control law in equation (37) can be found
that maximize the quality of the solution for f (x) in the inverse equations (37) and (38)?

Some simple observations from classical dynamics may provide insight into these dy-
namical regularization conditions. The evaluation of observable functions of a classical
system along a trajectory does not involve spatial integration, so that the inverse problem
analogous to equations (37) and (38) for a classical system is free from the accompany-
ing nonuniqueness problems (i.e., one can simply perform the inversion along the desired
trajectory). This suggests:

Question 47. Will control laws favorable for optimal dynamical regularization operate
by maximally localizing wavepackets?

With these questions in mind, a complete laboratory device may be envisioned
to function as an optimal dynamics inversion machine for the efficient and automatic
discovery of V or µ for diverse quantum systems [134,135]. This machine (or possibly
a family of these machines) would operate in a closed-loop mode to take advantage
of the ability to perform a very large number of high throughput control-observation
experiments. The successful development of such a machine could have a significant
impact in other areas, as the concept should be transferable beyond quantum mechanics.

The components of the optimal dynamics identification machine concept are
sketched in figure 4:
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Figure 4. The optimal dynamics identification machine.

(1) Initial approximations for V and µ could be used to design an optimal control
field aimed at causing the wave packet to evolve in desired spatial areas where
V and µ are being sought.

(2) Laboratory experiments using this control law would be performed to produce
the data trajectory 〈Oh(t)〉 = y(t) (various possible ultrafast observations and
multiple trajectories could be considered as sources of data).

(3) An inversion would be performed to produce updated potential or dipole infor-
mation.

(4) If the spatial domain of interest was not completely covered by the current
trajectory or if the inversion quality is not adequate, the procedure would be
repeated. The partial Hamiltonian information gained from step 3 could assist
in the design of an improved experimental control field.

This theoretical embodiment suggests:

Question 48. Can a functional optimal dynamics identification machine be realized
which would use designed control fields to incrementally and optimally discover the
Hamiltonian for a quantum system?

A positive answer to question 48 would require the resolution of several of the ques-
tions posed in the other sections of the paper, as it combines challenges associated with
control law design, data inversion, and laboratory implementation of quantum control.
Furthermore, to be operational the components of the machine in figure 4 need to work
in sync with each other.

We conclude the section on Hamiltonian identification by exploring a possi-
ble connection between dynamical inversion techniques and the corresponding time-
independent eigenvalue problems of traditional spectroscopy:
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Question 49. Are new methods for inverting existing time-independent, high-quality
spectral data possible which synthesize tracks of the form y(t) and use these tracks in
dynamical inversion algorithms?

Tracks of this type can potentially be developed from known Franck–Condon factors
and the associated transition energies [100].

5. Identification of quantum control rules of thumb

A cornerstone of chemistry is that physically similar molecules tend to exhibit
similar chemical behavior. The emphasis is on “similar”, and in the context of quantum
control the criteria for defining similarity is not known. From the rich behavior and infor-
mation content in the design, closed loop, and dynamical inversion aspects of quantum
control, one can anticipate using the emerging results to provide insight or estimates for
the control laws for physically related, but as yet uninvestigated, problems. The body of
relationships (as just yet beginning to be observed) between quantum systems, control
objectives, and control laws may be called quantum control rules of thumb. A spe-
cial example is the explanation of the timing of the pulses used in the STIRAP control
method [8]. However, attempts to find general control rules of thumb have proved much
more difficult than was at first expected. Part of the difficulty in finding quantum control
rules of thumb arises from the existence of multiple solutions to virtually all quantum
control problems, especially in the strong field nonlinear regime.

A natural strategy for identifying rules of thumb might ensue from a type of quan-
tum mechanical reverse engineering: solutions {C(t), ψ(t), λ(t), 〈O〉} to the optimal
control equations, or C(t) and 〈O〉 from closed loop experiments, could provide a phys-
ical basis for understanding the mechanisms and pathways leading the quantum system
from initial conditions to final control objectives. However, there exist many examples
in the literature in which the structure of the final control fields and the resulting control
pathways are found to be highly nonintuitive, and judging the relevance of such solutions
in terms of general rules of thumb is difficult in the presence of a possibly large number
of (locally) optimal solutions. Further insight into the structure of these local minima
may be gained by identifying the family of locally optimal control solutions and enu-
merating them based on their optimality. This problem might be partially alleviated by
incorporating a global search procedure in the optimization algorithm (e.g., a genetic al-
gorithm), both for theoretical design and laboratory control. This practical issue inspires
the general question:

Question 50. In light of the existence of multiple solutions to typical quantum control
problems, can broadly useful methods be developed to extract information about sys-
tematic classes of mechanisms for achieving control?

If such techniques were developed, the existence of multiple solutions could possibly be
exploited as a large body of data about control behavior.
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In the context of closed-loop laboratory implementation of controls, the presence of
multiple solutions to the quantum optimal control problem opens up several options [65].
Given that there exist many possible solutions C(t) from which identification of control
mechanisms could be attempted, it is important to select solutions that contain a mini-
mum of extraneous information that detract from this task. In addition, control rules of
thumb would best be developed based on solutions that are robust to realistic laboratory
noise. Both the suppression of extraneous structural components in C(t) and the selec-
tion of robust control fields may be accomplished through the use of appropriate cost
functionals [65]. This “cleanup” of control laws is likely to assist in identifying rules of
thumb for the control of quantum systems.

A first step toward answering question 50 involves the effective classification of
similarities and differences between molecules in a context relevant to the controls di-
recting them to certain physical objectives. This type of classification is fundamental
in many fields of chemistry and physics, in which the vast numbers of molecules are
categorized according to their relevant behaviors or properties. However, presently the
standard measures have not been able to consistently predict the structure of control
fields for particular objectives, suggesting the question:

Question 51. For purposes of control, what are the characteristic variables relevant to
codifying similarities and differences between atoms or between molecules?

A three-way classification structure will be necessary, relating (i) control laws, (ii) mole-
cular Hamiltonians and coupling terms, and (iii) control objectives. An initial step to-
ward building this structure will likely be identification of the relevant properties of
control laws C(t):

Question 52. The identification of spectral components and intensities is a simple way
to measure the physical mechanisms encoded in control fields. Considering that the
interpretation of these quantities requires knowledge of the underlying Hamiltonian, are
there better measures of similarities and differences between control fields?

Insights into control rules of thumb may also be evident from exploring the relation
between Hamiltonian structure and control results:

Question 53. Is there a general formulation to estimate how control fields for equivalent
objectives will differ under specific classes of Hamiltonian?

One way to answer this question might be through numerical optimal control calcula-
tions for a series of quantum systems whose Hamiltonians differ by small increments,
but collectively cover a broad sampling of physical systems. Such an experiment would
be expensive computationally, although the burden would be eased by exploiting the fact
that the controls should vary incerementally from case to case. The results may yield im-
portant information relating the structure of optimal control solutions with features of the
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corresponding Hamiltonians. Suitable quantum dynamics approximations may also be
helpful in achieving this objective.

It would be surprising if answers, at least qualitatively, do not come forth to the
posed questions of control mechanism identification and molecular controls classifica-
tion. Nevertheless, all evidence currently suggests that this will be a very difficult task.
The implications of finding quantum rules of thumb for both the theory of quantum con-
trol and its practical implementation are very substantial: resolution of this matter may
be the most important challenge ahead for the field.

6. Conclusions

The purpose of this paper is to advance the field of control over quantum mechani-
cal behavior by stimulating investigation along a broad set of lines through presentation
of a set of questions. As the field evolves some of these questions may prove to have
easy answers, while others may eventually be set aside as ill-advised. Other questions
and issues may stand as serious hurdles for the development of some aspects of the quan-
tum control field. Regardless of the specific outcome, if this paper serves as a stimulus
for the subject, then it will be a success.

Quantum mechanical control is a fast-growing research area, and this natural evo-
lution will likely produce important new questions and challenges. These developments
should be welcomed, and in this spirit we encourage the reader to fill in the next question.
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